Using palaeo-climate comparisons to constrain future projections in CMIP5
نویسندگان
چکیده
We present a selection of methodologies for using the palaeo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to attempt to constrain future climate projections using the same models. The constraints arise from measures of skill in hindcasting palaeo-climate changes from the present over three periods: the Last Glacial Maximum (LGM) (21 000 yr before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of palaeo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with palaeo-climate information give demonstrably different future results than the rest of the models. We also explore cases where comparisons are strongly dependent on uncertain forcing time series or show important non-stationarity, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the palaeo-climate simulations to help inform the future projections and urge all the modelling groups to complete this subset of the CMIP5 runs. Published by Copernicus Publications on behalf of the European Geosciences Union. 222 G. A. Schmidt et al.: Using palaeo-climate comparisons to constrain future projections in CMIP5
منابع مشابه
Using paleo-climate comparisons to constrain future projections in CMIP5
Introduction Conclusions References
متن کاملA new approach to projecting 21st century sea-level changes and extremes: 21st century sea level
Future increases in flooding potential around the world’s coastlines from extreme sea level events is heavily dependent on projections of future global mean sea level (GMSL) rise. Yet, the two main approaches for projecting 21st century GMSL rise—i.e., process-based versus semi-empirical—give inconsistent results. Here, a novel hybrid approach to GMSL projection, containing a process-based ther...
متن کاملNatural climate variability and teleconnections to precipitation over the PacificNorth American region in CMIP3 and CMIP5 models
[1] Natural climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the ...
متن کاملImproved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 global climate models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice–Ocean Modelling and Assimilation System (PI...
متن کاملPrediction of Prediction of Climate Change Impacts on Kharkeh Dam Reservoir Inflows with Using of CMIP5-RCP Scenarios
The objective of this research was to investigate the effects of climate change on precipitation and temperature parameters of Karkheh Basin and inflow to Karkheh dam reservoir. This was conducted by applying 21 GCM models under CMIP5 scenarios. The error indices of R2, RMSE and MAE models with the observed precipitation and temperature data were examined to find the appropriate GCM model, MRI-...
متن کامل